Feature selection#
Wrappers for the feature selectors of scikit-matter.
- class equisolve.numpy.feature_selection.CUR(recompute_every=1, k=1, tolerance=1e-12, n_to_select=None, score_threshold=None, score_threshold_type='absolute', progress_bar=False, full=False, random_state=0)[source]#
Bases:
GreedySelectorTransformer that performs Greedy Feature Selection with CUR.
Refer to
skmatter.feature_selection.CURfor full documentation.
- class equisolve.numpy.feature_selection.FPS(initialize=0, n_to_select=None, score_threshold=None, score_threshold_type='absolute', progress_bar=False, full=False, random_state=0)[source]#
Bases:
GreedySelectorTransformer that performs Greedy Feature Selection using Farthest Point Sampling.
Refer to
skmatter.feature_selection.FPSfor full documentation.